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1: Introduction 

Direct Current motors (DC motors) utilize a direct current input and produce a rotational 
motion in their shaft, which is through a magnetic field that causes the rotor to rotate around the 
stator [1]. These are extremely common in everyday devices, such as simple pumps, fans, cars, 
or most devices with a rotational motion [2]. In Lab 5, a DC motor is used as a tachometer, 
which is a device used to measure the speed of a motor [1]. The response of the DC motor to 
an applied voltage can be viewed as a first order system. Through the first order differential, a 
time constant, which describes a system's response to a step input as a numerical value. The 
time constant determines how quickly a system reaches its steady state.  These values will be 
analyzed through the use of three different methods - inspection, the central difference method, 
and linear regression. 
 A variety of parameters can be used to describe a tachometer and its results and 
functions. These include the time constant, calibration constant, and steady speed state. All of 
these are useful in finding unknown parameters of any given motor or tachometer. Theoretically, 
it is expected to see a similar calculated value for each parameter through each different 
method. 

2: Methods  

Prior to any data collection, the given values must be recorded. In this lab, the applied 
voltage was 12 volts, the motor winding resistance was 0.75 ohms, and the external resistor’s 
resistance was 3.09 ohms. The measurements were taken via a tachometer. Due to the 
necessity for a conversion to RPM, the calibration constant is found with equation (1), using the 
steady state voltage and rotational speed to solve for c. The measurements for this lab were 
taken through the LabView Software. The motor was turned on and it was confirmed that it was 
working. For the motor-only data, the switch was turned to “MW Only”, which allows the motor to 
run without the in-line resistor. Data was then collected for a short period of time as the motor 
was turned on, about 5 seconds. The process was repeated for data collection while including 
the in-line resistor. Using the steady state voltage output, the steady state speed of the motor, 
and equation (1) below, the voltage data sets were converted to RPM 

𝛺 = 𝑐𝑉𝑠    (1) 

 The three methods were then used to calculate the parameters for this lab. By 
inspection, the 63.2% response point was found, and in turn the corresponding estimate of time 
constant. This is done by finding the point where rotational speed reaches 63.2% of its steady 
state value [3]. 
 The next method used was the central difference method. This method consists of 
finding the derivative of a point on the steady state response curve to be used to create a 
tangent line to the curve. The intersection of this tangent line is then used to estimate the time 
constant. The derivative of the discretely sampled signal can be approximated with the central 
difference method, in equation (2), where h is the sampling period [3]. 
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The derivative can then be used in equation (3) to find the slope of response at any 
given time. In this equation, Y is the steady state response and 𝜏. A line tangent to the curve 
can be found using the slope at a given point.  
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The last method for finding the time constant is using the linear regression method. This method 
tends to be more rigorous yet more accurate. The recorded data undergoes semi-log 
transformation, and then a linear regression is performed. It can be transformed into semi-log 
form by rearranging equation 3 above and finding the natural log of either side. With the new 

data, equation (4a) can be used. The slope of this equation is  −
ଵ

ఛ
Therefore the time constant 

can be found with equation (4b) [3]. 
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𝜏 = −1/(𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛) (4b) 

 
After finding the time constant using these three methods, other parameters must be found. 
Using a manufacturer supplied torque constant. The recorded steady state values and known 
system parameters can be used to determine the motor voltage constant and damping 
coefficient. The motor voltage constant can be calculated using the following equation (5). By 
using the time constants found with equation (4), a system of equations is created, and b and 𝑘௚ 

can be solved for. 

𝜏 = 𝐽/(𝑏 +
𝐾௧𝐾௚

𝑅
) (5) 

Using these variables, the system’s rotational inertia can be calculated. This can be 
done using the following equation (6).  

𝜏 = 𝐽/(𝑏 +
𝐾௧𝐾௚

𝑅
) 

 

(6) 
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3: Results and Discussion 

Figures 1 and 2 show the collected data from both the motor with no additional 
resistance, as well as the motor with the additional resistance. 

 

 
Via inspection when rotational speed is approximately 63.2% of the steady state speed. 

This was found to be 0.13 seconds with just the MW, and 1.1 seconds with the additional 
resistor. Using the central difference method, a point was chosen at random, and the slope was 

Figure 1: Graph for Rotation Speed vs Time without additional 

Figure 2: Graph for Rotation Speed vs Time with the additional resistor 
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calculated. The only MW motor time constant found was 0.18 seconds. For the motor with the 
resistance, the time constant found was of .43 seconds. The last method used was via the semi 
log transform method. The graphs of the data after undergoing a semi log transform as well as 
their lines of best fit are shown in figures 3 and 4.  

 

 
 Using equation (4b), the time constant for the MW only is .18 seconds. and the resistor 
is 1.08 seconds. These are likely the most accurate calculations for time constant. This implies 
that the method of inspection was capable of providing a good estimate as to where the time 
constant was. However, the central difference method was completely inaccurate. 

Figure 3: Graph for the semi log transform Rotation Speed vs Time without the 

Figure 4: Graph for the semi log transform of Rotation Speed vs Time with the 
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 Using equation (5), the following system of equations was created. 
(ଶସ଴଴ோ௉ெ)

ଵଶ௏
= 1/(𝐾௚ +

௕(଴.଻ହఆ)

(଴.଴ସ଺ଵ ேି௠/஺)
) 

(ଵ଼଴଴ோ௉ெ)

ଵଶ௏
= 1/(𝐾௚ +

௕(ଷ.଼ସఆ)

(଴.଴ସ଺ଵ ேି௠/஺)
) 

By solving this system of equations, 𝑏 =  .0117 𝑁𝑚/𝑅𝑃𝑀 and 𝐾௚ = 0.00459 𝑉/𝑅𝑃𝑀. 

Using these values, the time constants found via linear regression, and equation (6), the 
rotational inertia of the MW only motor is 𝐽ெௐ  =  37.62 𝑘𝑔𝑚ଶ, and the resistor winding is 
𝐽௥௘௦௜௦௧௢௥  =  44.44 𝑘𝑔𝑚ଶ. 
 

4: Conclusion 

The three methods of determining a time constant have varying levels of reliability. The 
method of inspection seems reliable and is consistent. This method is so simple that it can be 
used to easily determine the general area of the correct value. The central difference method is 
extremely unreliable. The noise in the data created an oscillating effect instead of a perfect 
exponential curve. This means that the slope found at every point has very high variance, with 
some even being negative. Since there is no way to pick a point to check that will be accurate to 
the entire system, it is inconsistent and unreliable. If the data had controlled for this error more 
successfully, this method would be more reliable. Lastly, the most accurate measure was the 
linear regression method. By taking the line of best fit, the random error in the data was 
accounted for. The high correlation coefficient also implies that the slope found is accurate. The 
rotational inertia should not change regardless of the resistance within the motor. Since the 
inertia found with the MW time constant is within 15% of the inertia found with the resistance, 
the data collected, including the calculated time constants, were accurate. This shows that using 
a DC motor as a tachometer is acceptable. The difference can be attributed to the compounded 
error from the collected data. Moreover, the given values were not found experimentally, but 
given by the manufacturer. This data could have high variance, and the values like steady state 
rotational speed could have changed due to the age of the motor.  
 The data collection shows some oscillating motion in the rotational speed. The type of 
motion implies that the motor wasn’t spinning at a constant speed, which could be attributed to 
its condition. In addition, random ambient forces in the room could have an impact on rotational 
speed. To correct for this in the future, a new motor could be used. Furthermore, multiple trials 
can be taken to verify the time constants found, reducing any random error.  When finding the 
time constant via the central difference method, which point chosen has a large effect on the 
outcome. To control for this, multiple points should be tested. In addition, having data with a 
larger step size and less variation will improve the accuracy of this method.  
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